3.10.23 \(\int \frac {(d+e x)^m (a+b x+c x^2)}{(f+g x)^2} \, dx\) [923]

Optimal. Leaf size=157 \[ \frac {c (d+e x)^{1+m}}{e g^2 (1+m)}+\frac {\left (a+\frac {f (c f-b g)}{g^2}\right ) (d+e x)^{1+m}}{(e f-d g) (f+g x)}+\frac {(c f (2 d g-e f (2+m))-g (a e g m+b (d g-e f (1+m)))) (d+e x)^{1+m} \, _2F_1\left (1,1+m;2+m;-\frac {g (d+e x)}{e f-d g}\right )}{g^2 (e f-d g)^2 (1+m)} \]

[Out]

c*(e*x+d)^(1+m)/e/g^2/(1+m)+(a+f*(-b*g+c*f)/g^2)*(e*x+d)^(1+m)/(-d*g+e*f)/(g*x+f)+(c*f*(2*d*g-e*f*(2+m))-g*(a*
e*g*m+b*(d*g-e*f*(1+m))))*(e*x+d)^(1+m)*hypergeom([1, 1+m],[2+m],-g*(e*x+d)/(-d*g+e*f))/g^2/(-d*g+e*f)^2/(1+m)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {963, 81, 70} \begin {gather*} -\frac {(d+e x)^{m+1} \, _2F_1\left (1,m+1;m+2;-\frac {g (d+e x)}{e f-d g}\right ) (g (a e g m+b d g-b e f (m+1))-c f (2 d g-e f (m+2)))}{g^2 (m+1) (e f-d g)^2}+\frac {(d+e x)^{m+1} \left (a+\frac {f (c f-b g)}{g^2}\right )}{(f+g x) (e f-d g)}+\frac {c (d+e x)^{m+1}}{e g^2 (m+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^m*(a + b*x + c*x^2))/(f + g*x)^2,x]

[Out]

(c*(d + e*x)^(1 + m))/(e*g^2*(1 + m)) + ((a + (f*(c*f - b*g))/g^2)*(d + e*x)^(1 + m))/((e*f - d*g)*(f + g*x))
- ((g*(b*d*g + a*e*g*m - b*e*f*(1 + m)) - c*f*(2*d*g - e*f*(2 + m)))*(d + e*x)^(1 + m)*Hypergeometric2F1[1, 1
+ m, 2 + m, -((g*(d + e*x))/(e*f - d*g))])/(g^2*(e*f - d*g)^2*(1 + m))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 963

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{Qx = PolynomialQuotient[(a + b*x + c*x^2)^p, d + e*x, x], R = PolynomialRemainder[(a + b*x + c*x^2)^p,
 d + e*x, x]}, Simp[R*(d + e*x)^(m + 1)*((f + g*x)^(n + 1)/((m + 1)*(e*f - d*g))), x] + Dist[1/((m + 1)*(e*f -
 d*g)), Int[(d + e*x)^(m + 1)*(f + g*x)^n*ExpandToSum[(m + 1)*(e*f - d*g)*Qx - g*R*(m + n + 2), x], x], x]] /;
 FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&& IGtQ[p, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(d+e x)^m \left (a+b x+c x^2\right )}{(f+g x)^2} \, dx &=\frac {\left (a+\frac {f (c f-b g)}{g^2}\right ) (d+e x)^{1+m}}{(e f-d g) (f+g x)}+\frac {\int \frac {(d+e x)^m \left (\frac {c d f g-a e g^2 m-c e f^2 (1+m)-b g (d g-e f (1+m))}{g^2}-c \left (d-\frac {e f}{g}\right ) x\right )}{f+g x} \, dx}{e f-d g}\\ &=\frac {c (d+e x)^{1+m}}{e g^2 (1+m)}+\frac {\left (a+\frac {f (c f-b g)}{g^2}\right ) (d+e x)^{1+m}}{(e f-d g) (f+g x)}-\frac {(g (b d g+a e g m-b e f (1+m))-c f (2 d g-e f (2+m))) \int \frac {(d+e x)^m}{f+g x} \, dx}{g^2 (e f-d g)}\\ &=\frac {c (d+e x)^{1+m}}{e g^2 (1+m)}+\frac {\left (a+\frac {f (c f-b g)}{g^2}\right ) (d+e x)^{1+m}}{(e f-d g) (f+g x)}-\frac {(g (b d g+a e g m-b e f (1+m))-c f (2 d g-e f (2+m))) (d+e x)^{1+m} \, _2F_1\left (1,1+m;2+m;-\frac {g (d+e x)}{e f-d g}\right )}{g^2 (e f-d g)^2 (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 0.21, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(d+e x)^m \left (a+b x+c x^2\right )}{(f+g x)^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[((d + e*x)^m*(a + b*x + c*x^2))/(f + g*x)^2,x]

[Out]

Integrate[((d + e*x)^m*(a + b*x + c*x^2))/(f + g*x)^2, x]

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (e x +d \right )^{m} \left (c \,x^{2}+b x +a \right )}{\left (g x +f \right )^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(c*x^2+b*x+a)/(g*x+f)^2,x)

[Out]

int((e*x+d)^m*(c*x^2+b*x+a)/(g*x+f)^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)/(g*x+f)^2,x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)*(x*e + d)^m/(g*x + f)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)/(g*x+f)^2,x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)*(x*e + d)^m/(g^2*x^2 + 2*f*g*x + f^2), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: HeuristicGCDFailed} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(c*x**2+b*x+a)/(g*x+f)**2,x)

[Out]

Exception raised: HeuristicGCDFailed >> no luck

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(c*x^2+b*x+a)/(g*x+f)^2,x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)*(x*e + d)^m/(g*x + f)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^m\,\left (c\,x^2+b\,x+a\right )}{{\left (f+g\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x)^m*(a + b*x + c*x^2))/(f + g*x)^2,x)

[Out]

int(((d + e*x)^m*(a + b*x + c*x^2))/(f + g*x)^2, x)

________________________________________________________________________________________